Question -

If the number of terms in the expansion of $\left(1-\frac{2}{x}+\frac{4}{x^2}\right)^n$, $x \neq 0$, is 28, then the sum of the

coefficients of all the terms in this expansion, is

(2016 Main)

(a) 64

(b) 2187

(c) 243

(d) 729

Ans - D Solution -

Clearly, number of terms in the expansion of

$$\left(1 - \frac{2}{x} + \frac{4}{x^2}\right)^n \text{ is } \frac{(n+2)(n+1)}{2} \text{ or } n+2C_2.$$
[assuming $\frac{1}{x}$ and $\frac{1}{x^2}$ distinct]

$$\therefore \frac{(n+2)(n+1)}{2} = 28$$

$$\Rightarrow$$
 $(n+2)(n+1) = 56 = (6+1)(6+2) \Rightarrow n = 6$

Hence, sum of coefficients = $(1 - 2 + 4)^6 = 3^6 = 729$